448 research outputs found

    Sensitivity of hypogean and epigean freshwater copepods (Crustacea Copepoda) to agricultural pollutants: single toxicants and mixtures

    Get PDF
    Widespread pollution from agriculture is one of the major causes of poor freshwater quality currently observed across Europeand worldwide. Nutrient loads (nitrogen and phosphorous) from fertilizers and pesticides are known to adversely impact freshwater ecosystems, both surface- and ground water. The Crustacea Copepoda are by far the most abundant and species-rich taxon in ground water and they are consistently represented in ecotonal environments also, as in the hyporheic zone. The direct impact of agricultural pollutants on freshwater biota has been addressed in several studies by means of laboratory bioassays. However, the ecotoxicological research concerning freshwater copepods is scarce for epigean species and almost non-existent for the hypogean ones. Moreover, when available, ecotoxicological studies have been performed considering the effect of toxicants taken individually. Actually, this approach does not reflect the conditions in the field high concentrations of both N-fertilizers and pesticides co-occur. In this study we assessed the acute (at 96h) sensitivity of adults of a hypogean and an epigean species, both belonging to the Crustacea, Copepoda, Cyclopoida, Cyclopidae, to two agricultural toxicants: the ammonium nitrate and the herbicides Imazamox. Both chemicals are widely used for cereal agriculture inEurope. We tested the sensitivity considering the LC50 with mortality endpoints for individual and combined (a mixture solution of ammonium nitrate and Imazamox) toxicant concentrations. The hypogean species was more sensitive than the epigean one to both chemicals and their mixture. Ionized ammonia proved to be more toxic than the herbicide Imazamox for both species. However, the LC50 of both chemicals were lower than the actual standard law limits for good freshwater quality status defined by the Water Framework Directive (2000/60/CE). The effect of the mixture, of the two toxicants was fairly synergic. Concerning ionized ammonia, the LC50-96h in the mixture was higher than the law limits for both species. According to these results, the actual law limits for the good quality of freshwater bodies should be revised accordingly by authorities in charge of water management

    A simple and quick method for loading proteins in extracellular vesicles

    Get PDF
    Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk. The goal of this study was to develop a quick, versatile, and simple method for loading proteins in EVs post-isolation. Proteins, including CRISPR associated protein 9 (Cas9), were bound to cationic lipids that were further complexed with MDA-MB-231 cell-derived EVs through passive incubation. Size-exclusion chromatography was used to remove components that were not complexed with EVs. The ability of EVs to mediate intracellular delivery of proteins was compared to conventional methods, such as electroporation and commercial protein transfection reagents. The results indicate that EVs retain native features following protein-loading and obtain similar levels of intracellular protein delivery as conventional methods, but display less toxicity. This method opens up opportunities for rapid exploration of EVs for protein delivery

    Temperature effect on the sensitivity of the copepod Eucyclops serrulatus (Crustacea, Copepoda, Cyclopoida) to agricultural pollutants in the hyporheic zone

    Get PDF
    Abstract The sensitivity of freshwater invertebrates to agricultural pollutants is supposed to increase with rising temperature due to global warming. The aim of this study was to measure the effect of temperature on the lethal toxicity of ammonia-N, the herbicide Imazamox and the mixture of the two chemicals, in the adults and the juveniles of a population of the copepod Eucyclops serrulatus. This is a widely distributed species found in surface waters, in transitional habitats between surface water and groundwater, and in genuine groundwater environments. We tested the sensitivity by short-term bioassays (96 h) at 15°C and 18°C, respectively. Our results highlighted the following: (1) increasing temperature affected the sensitivity of the adults to ammonia-N and of the juveniles to the mixture, all of which were more sensitive to its detrimental effects at 18°C; (2) the juvenile stages were more sensitive than the adults to all toxicants, and (3) for all combinations of chemicals and temperatures, the effects were synergistic and approximately one order of magnitude greater than those expected according to a concentration addition model when comparing the LC50 for each chemical in the mixture with the LC50s of chemicals individually assayed. Overall, in a context of global change, ammonia-N and mixtures of agricultural pollutants may affect the survival rate of species that spend a part or the whole life-cycle in the hyporheic habitat, with detrimental effects to biodiversity and ecosystem services provided by the hyporheic biota

    Kernel density classification and boosting: an L2 sub analysis

    Get PDF
    Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification. A relative newcomer to the classification portfolio is “boosting”, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research

    Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer

    Get PDF
    Doxorubicin hydrochloride (DOX) is currently used to treat orthotropic and metastatic breast cancer. Because of its side effects, the use of DOX in cancer patients is sometimes limited; for this reason, several scientists tried designing drug delivery systems which can improve drug therapeutic efficacy and decrease its side effects. In this study, we designed, prepared, and physiochemically characterized nonionic surfactant vesicles (NSVs) which are obtained by self-assembling different combinations of hydrophilic (Tween 20) and hydrophobic (Span 20) surfactants, with cholesterol. DOX was loaded in NSVs using a passive and pH gradient remote loading procedure, which increased drug loading from ∼1 to ∼45%. NSVs were analyzed in terms of size, shape, size distribution, zeta potential, long-term stability, entrapment efficiency, and release kinetics, and nanocarriers having the best physiochemical parameters were selected for further in vitro tests. NSVs with and without DOX were stable and showed a sustained drug release up to 72 h. In vitro studies, with MCF-7 and MDA MB 468 cells, demonstrated that NSVs, containing Span 20, were better internalized in MCF-7 and MDA MB 468 cells than NSVs with Tween 20. NSVs increased the anticancer effect of DOX in MCF-7 and MDA MB 468 cells, and this effect is time and dose dependent. In vitro studies using metastatic and nonmetastatic breast cancer cells also demonstrated that NSVs, containing Span 20, had higher cytotoxicity than NSVs with Tween 20. The resulting data suggested that DOX-loaded NSVs could be a promising nanocarrier for the potential treatment of metastatic breast cancer

    Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination.</p> <p>Results</p> <p>Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (<it>r </it>= 0.834, <it>p </it>< 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical <it>nahAc</it>-like genes, <it>phnAc</it>-like genes as identified in <it>Alcaligenes faecalis </it>AFK2, and <it>phnA1</it>-like genes from marine PAH-degraders from the genus <it>Cycloclasticus</it>.</p> <p>Conclusion</p> <p>These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.</p

    Functional and structural reliability of optic nerve head measurements in healthy eyes by means of optical coherence tomography angiography

    Get PDF
    Background and Objectives: the aim of the study was to evaluate the repeatability and reproducibility of optical microangiography (OMAG)-based optical coherence tomography angiography (OCTA) in the optic nerve head (ONH) and radial peripapillary capillary (RPC) perfusion assessment of healthy eyes. Materials and Methods: in this observational study, a total of 40 healthy subjects underwent ONH evaluation, using an OMAG-based OCTA system at baseline (T0), after 30 min (T1), and after 7 days (T2). The main outcome measures were the vessel density (VD) and flux index (FI) of the RPCs, as well as peri-papillary retinal nerve fibre layer (pRNFL) thickness. The analysis was performed by two observers independently. The coefficient of repeatability (CR), within the subject coefficient of variation (CVw) and intrasession correlation coefficient (ICC), to evaluate intrasession repeatability of measurements was calculated for each observer. Results: the high intrasession and intersession repeatability and reproducibility were assessed in the two observers for all three outcome measures. Of note, the CRs for the first and the second observer were 0.011 (95% confidence interval (CI) 0.009–0.014) and 0.016 (95% CI 0.013–0.020) for FI, 0.016 (95% CI 0.013–0.021) and 0.017 (95% CI 0.014–0.021) for VD, and 2.400 (95% CI 1.948–3.092) and 3.732 (95% CI 3.064–4.775) for pRNFL thickness, respectively. The agreement between them was excellent for pRNFL assessment and very good for FI and VD. Conclusion: OCTA has a great potential in the accurate assessment of ONH and peri-papillary microcirculation. It allows for repeated and reproducible measurements without multiple scans-related bias, thus guaranteeing an independent operator analysis with good reproducibility and repeatability

    Reaction between YBa2Cu3O7−x and water

    Full text link
    Reaction between water at 80 °C and YBa2Cu3O7−x (0.8<x<0.0) is studied using x‐ray absorption fine structure (EXAFS) and x‐ray diffraction (XRD). Oxygen deficient YBa2Cu3O7−x reacts with water and decomposes into BaCO3, CuO and at least one other Cu containing phase. YBa2Cu3O7 reacts slowly with water and the bulk material is modified before it decomposes. The structural and chemical modifications of this material resemble those reported for YBa2Cu3O7 reacted with hydrogen gas. We conclude that either hydrogen or water enters the bulk before decomposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87349/2/360_1.pd

    Wireless Shelf Life Monitoring and Real Time Prediction in a Supply-Chain of Perishables Goods

    Get PDF
    This paper discusses the huge potential of a Wireless Sensor Network (WSN) as a tool for real-time monitoring in a perishable goods supply chain according to the pressing need of security and food certification. The combination of an appropriate monitoring system and further data processing create a tool that can provide the most useful information for each application. In this paper we propose a case study
    corecore